Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38541159

RESUMEN

Background and Objectives: Muscle atrophy occurs when protein degradation exceeds protein synthesis, resulting in imbalanced protein homeostasis, compromised muscle contraction, and a reduction in muscle mass. The incidence of muscle atrophy is increasingly recognized as a significant worldwide public health problem. The aim of the current study was to evaluate the effect of whey peptide (WP) on muscle atrophy induced by dexamethasone (DEX) in mice. Materials and Methods: C57BL/6 mice were divided into six groups, each consisting of nine individuals. WPs were orally administered to C57BL/6 mice for 6 weeks. DEX was administered for 5-6 weeks to induce muscle atrophy (intraperitoneal injection, i.p.). Results: Microcomputer tomography (CT) analysis confirmed that WP significantly increased calf muscle volume and surface area in mice with DEX-induced muscle atrophy, as evidenced by tissue staining. Furthermore, it increased the area of muscle fibers and facilitated greater collagen deposition. Moreover, WP significantly decreased the levels of serum biomarkers associated with muscle damage, kidney function, and inflammatory cytokines. WP increased p-mTOR and p-p70S6K levels through the IGF-1/PI3K/Akt pathway, while concurrently decreasing protein catabolism via the FOXO pathway. Furthermore, the expression of proteins associated with myocyte differentiation increased noticeably. Conclusions: These results confirm that WP reduces muscle atrophy by regulating muscle protein homeostasis. Additionally, it is believed that it helps to relieve muscle atrophy by regulating the expression of myocyte differentiation factors. Therefore, we propose that WP plays a significant role in preventing and treating muscle wasting by functioning as a supplement to counteract muscle atrophy.


Asunto(s)
Dexametasona , Suero Lácteo , Ratones , Animales , Dexametasona/efectos adversos , Suero Lácteo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Péptidos/efectos adversos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36310623

RESUMEN

Osteoarthritis (OA) is a chronic, progressive joint disease associated with pain, functional impairment, and diminished quality of life in affected individuals. At a societal level, it also has a high economic burden. Boswellia serrata has been reported to have potent anti-inflammatory, antiarthritic, and analgesic effects. The aim of this study was to explore the therapeutic potential and possible underlying mechanism of 5-Loxin®, a standardized Boswellia serrata extract, in a rat model of OA. The OA model was established by the intra-articular injection of 50 µL of monosodium iodoacetate (MIA) (60 mg/mL). 5-Loxin® was administered orally, and efficacy was evaluated through serum analysis, real-time polymerase chain reaction (PCR), histologic staining, and micro-computed tomography (micro-CT). Results indicated that administration of 5-Loxin® can relieve OA joint pain through inhibition of both inflammatory processes and cartilage degeneration. In the group of rats treated with 5-Loxin®, the suppression of inflammatory enzymes such as cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) resulted in a significant reduction in the prostaglandin (PG) E2 and leukotriene (LT) B4 levels. Moreover, 5-Loxin® ameliorated the deterioration of the main components of the articular extracellular matrix (ECM), such as glycosaminoglycans (GAGs) and aggrecan, through the downregulation of matrix metalloproteinases (MMPs). These findings suggest that 5-Loxin® may be a potential therapeutic agent for the treatment of OA.

3.
Antibiotics (Basel) ; 9(5)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438609

RESUMEN

As bacteria are becoming more resistant to commonly used antibiotics, alternative therapies are being sought. whISOBAX (WH) is a witch hazel extract that is highly stable (tested up to 2 months in 37 °C) and contains a high phenolic content, where 75% of it is hamamelitannin and traces of gallic acid. Phenolic compounds like gallic acid are known to inhibit bacterial growth, while hamamelitannin is known to inhibit staphylococcal pathogenesis (biofilm formation and toxin production). WH was tested in vitro for its antibacterial activity against clinically relevant Gram-positive and Gram-negative bacteria, and its synergy with antibiotics determined using checkerboard assays followed by isobologram analysis. WH was also tested for its ability to suppress staphylococcal pathogenesis, which is the cause of a myriad of resistant infections. Here we show that WH inhibits the growth of all bacteria tested, with variable efficacy levels. The most WH-sensitive bacteria tested were Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis, followed by Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Streptococcus agalactiae and Streptococcus pneumoniae. Furthermore, WH was shown on S. aureus to be synergistic to linezolid and chloramphenicol and cumulative to vancomycin and amikacin. The effect of WH was tested on staphylococcal pathogenesis and shown here to inhibit biofilm formation (tested on S. epidermidis) and toxin production (tested on S. aureus Enterotoxin A (SEA)). Toxin inhibition was also evident in the presence of subinhibitory concentrations of ciprofloxacin that induces pathogenesis. Put together, our study indicates that WH is very effective in inhibiting the growth of multiple types of bacteria, is synergistic to antibiotics, and is also effective against staphylococcal pathogenesis, often the cause of persistent infections. Our study thus suggests the benefits of using WH to combat various types of bacterial infections, especially those that involve resistant persistent bacterial pathogens.

4.
Antibiotics (Basel) ; 8(4)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795423

RESUMEN

whISOBAX (WH), an extract of the witch-hazel plant that is native to the Northeast coast of the United States, contains significant amounts of a phenolic compound, Hamamelitannin (HAMA). Green tea (GT) is a widely consumed plant that contains various catechins. Both plants have been associated with antimicrobial effects. In this study we test the effects of these two plant extracts on the pathogenesis of staphylococci, and evaluate their effects on bacterial growth, biofilm formation, and toxin production. Our observations show that both extracts have antimicrobial effects against both strains of S. aureus and S. epidermidis tested, and that this inhibitory effect is synergistic. Also, we confirmed that this inhibitory effect does not depend on HAMA, but rather on other phenolic compounds present in WH and GT. In terms of biofilm inhibition, only WH exhibited an effect and the observed anti-biofilm effect was HAMA-depended. Finally, among the tested extracts, only WH exhibited an effect against Staphylococcal Enterotoxin A (SEA) production and this effect correlated to the HAMA present in WH. Our results suggest that GT and WH in combination can enhance the antimicrobial effects against staphylococci. However, only WH can control biofilm development and SEA production, due to the presence of HAMA. This study provides the initial rationale for the development of natural antimicrobials, to protect from staphylococcal colonization, infection, or contamination.

5.
Food Sci Biotechnol ; 28(3): 907-911, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31093449

RESUMEN

Postprandial blood glucose lowering effect of vitamin B6 (pyridoxine) was evaluated in healthy individuals with normal blood glucose levels. Blood glucose levels were measured every 30 min for 2 h after oral sugar administration with or without 50 mg of pyridoxine. Pyridoxine significantly lowered the postprandial blood glucose levels at 30 min (from 165.95 ± 17.19 to 138.36 ± 20.43, p < 0.01) and 60 min (from 131.40 ± 17.20 to 118.50 ± 15.95) after administration. In addition, the area under the concentration-time curve (AUCt) was reduced by about 8.3% (from 257.08 ± 22.38 to 235.71 ± 12.33, p < 0.05) and the maximum concentration of blood glucose (Cmax) was reduced by about 13.8% (from 165.95 ± 17.19 to 143.07 ± 11.34, p < 0.01) when compared with those of the control group. Our findings suggest that pyridoxine supplementation may be beneficial for controlling postprandial hyperglycemia.

6.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543768

RESUMEN

Onion (Allium cepa L.) is widely consumed as food or medicinal plant due to its well-defined health benefits. The antioxidant and antihyperlipidemic effects of onion and its extracts have been reported well. However, very limited information on anti-hyperglycemic effect is available in processed onion extracts. In our previous study, we reported that Amadori rearrangement compounds (ARCs) produced by heat-processing in Korean ginseng can reduce carbohydrate absorption by inhibiting intestinal carbohydrate hydrolyzing enzymes in both in vitro and in vivo animal models. To prove the enhancement of anti-hyperglycemic effect and ARCs content by heat-processing in onion extract, a correlation between the anti-hyperglycemic activity and the total content of ARCs of heat-processed onion extract (ONI) was investigated. ONI has a high content of ARCs and had high rat small intestinal sucrase inhibitory activity (0.34 ± 0.03 mg/mL, IC50) relevant for the potential management of postprandial hyperglycemia. The effect of ONI on the postprandial blood glucose increase was investigated in Sprague Dawley (SD) rats fed on sucrose or starch meals. The maximum blood glucose levels (Cmax) of heat-processed onion extract were significantly decreased by about 8.7% (from 188.60 ± 5.37 to 172.27 ± 3.96, p < 0.001) and 14.2% (from 204.04 ± 8.73 to 175.13 ± 14.09, p < 0.01) in sucrose and starch loading tests, respectively. These results indicate that ARCs in onion extract produced by heat-processing have anti-diabetic effect by suppressing carbohydrate absorption via inhibition of intestinal sucrase, thereby reducing the postprandial increase of blood glucose. Therefore, enhancement of ARCs in onion by heat-processing might be a good strategy for the development of the new product on the management of hyperglycemia.


Asunto(s)
Antioxidantes/farmacología , Restricción Calórica , Hipoglucemiantes/farmacología , Cebollas/química , Extractos Vegetales/farmacología , Animales , Glucemia/metabolismo , Glucosidasas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Sacarasa/metabolismo
7.
Food Sci Biotechnol ; 25(3): 899-904, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30263351

RESUMEN

Policosanol is a well-defined nutraceutical for the management of blood cholesterol levels. The present study examined (i) the effect of policosanol supplementation on blood cholesterol and glucose levels and (ii) changes in hepatic cholesterol biosynthesis using 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) activity in Wistar rats fed high cholesterol diets. The Wistar rats were assigned randomly to high-cholesterol diets (1.25% cholesterol) with or without policosanol (8.0 mg/kg body weight) for 6 weeks. Compared with the control group, dietary treatment with policosanol resulted in a significant decrease of blood cholesterol (p<0.01), blood glucose (p<0.01), triglyceride (p<0.001), and low density lipoprotein-cholesterol levels (p<0.01) and HMG-CoA reductase activity (p<0.001) in the liver. These results indicate that policosanol decreases blood cholesterol levels by suppressing cholesterol biosynthesis via decrease of HMG-CoA activity. Policosanol has the potential to be developed into an effective dietary strategy for both postprandial hyperglycemia and hypercholesterolemia.

8.
Food Sci Biotechnol ; 25(3): 911-914, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30263353

RESUMEN

The effect of chitosan oligosaccharide (GO2KA1) administration on postprandial blood glucose levels of subjects with normal blood glucose levels was evaluated following bread consumption. Postprandial blood glucose levels were determined for 2 h after bread ingestion with or without 500 mg of GO2KA1. GO2KA1 significantly lowered the mean, maximum, and minimum levels of postprandial blood glucose at 30 min after the meal. Postprandial blood glucose levels were decreased by about 25% (from 155.11±13.06 to 138.50±13.59, p<0.01) at 30 min when compared to control. Furthermore, we observed that the area under the concentration-time curve (AUCt) was decreased by about 6% (from 255.46±15.43 to 240.15±14.22, p<0.05) and the peak concentration of blood glucose (C max) was decreased by about 11% (from 157.94±10.90 to 140.61±12.52, p<0.01) when compared to control. However, postprandial the time to reach C max (Tmax) levels were the same as those found in control. Our findings suggest that GO2KA1 limits the increase in postprandial blood glucose levels following bread consumption.

9.
Int J Mol Sci ; 16(4): 8811-25, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25906471

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Hiperglucemia/tratamiento farmacológico , Extractos Vegetales/farmacología , alfa-Glucosidasas/química , Animales , Glucemia , Camellia sinensis/química , Evaluación Preclínica de Medicamentos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Inhibidores de Glicósido Hidrolasas/química , Intestinos/efectos de los fármacos , Intestinos/enzimología , Masculino , Extractos Vegetales/química , Ratas Sprague-Dawley , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...